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&Sr,MnO, belongs to the K,NiF,-type structure. The magnetic structure studied by neutron 
diffraction is characterized by antiferromagnetic interactions between nearest-neighbor MrP ions. 
The value of the exchange integral J/k calculated by the high-temperature series expansion method is 
about -80 K. All magnetic properties of P-Sr2MnC& show the 2D character of the magnetic 
interactions and illustrate the strong covalency of the Mn-0 bonds within the magnetic layers. 

In the scope of a general study of the 
magnetic properties of layer oxides, we 
discuss here the results obtained for p- 
SrPMnOd which has a K,NiF,-type struc- 
ture. 

Sr,MnO, was first prepared by Baltz and 
Plieth. The phase obtained was identified as 
isostructural with K,NiF,; the cell parame- 
ters were: a = 3.79 A and c = 12.43 8, (1). 
In a previous study of the strontium-man- 
ganese-oxygen system, Mizutani et al. (2). 
have shown that Sr,MnO, exists actually 
with two allotropic forms: a low-tempera- 
ture (Y variety of undetermined structure 
and the high-temperature /I form, with the 
K,NiF,-type structure, whose cell parame- 
ters are close to those determined previ- 
ously: a = 3.787 8, and c = 12.495 A. The (Y 
+ p transformation takes place between 
1500 and 1600°C. The high-temperature p 
form can be obtained by quenching to room 
temperature, the reverse /3 + (Y transforma- 
tion occurs only when the sample is an- 
nealed for at least 8 hr at 1200°C. 
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I. Preparation 

P-Sr,MnO, has been obtained by heating 
cu-SrzMn04 in air at 1650°C for 30 min, the 
latter being prepared upon calcination in an 
oxygen stream of a mixture of SrC03 and 
MnzO, according to 

4SrC03 + MnzO, 
+ 4 O2 + 2SrzMn04 + 4C02 t 

Two successive heating treatments, one 
of 15 hr at 900°C and the other of 15 hr at 
1200°C were necessary to obtain a pure cr 
phase. 

The cell parameters of the p phase, a = 
3.787 A and c = 12.496 A, are very close to 
those announced before (2). The X-ray 
diffraction spectrum confirms that p- 
SrzMnO, is isostructural with K2NiF,. The 
observation of systematic extinctions cor- 
responding to h + k + 1 = 2n + 1 agrees 
with space group I4/mmm, typical of tetra- 
gonal K,NiF,-type phases. 

Due to the preparation method it may be 
supposed that P-SrzMn04 contains a certain 
number of Mn3+ ions which, although 
small, is not negligible. As shown previ- 
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ously, the presence of some Mn3+ ions in 
such a material leads to a sharp increase in 
electronic conductivity and conversely a 
rapid decrease in the activation energy for 
conduction (3). 

Conductivity measurements on p- 
Sr,MnO, have been carried out between 
300 and 700 K for polycrystalline samples. 
The variation of log cr with reciprocal tem- 
perature is given in Fig. 1. The results are 
similar to those previously obtained for 
Ca,MnO,. A small conductivity and a high 
activation energy for conduction are ob- 
served (AE = 0.39eV), suggesting thus that 
the presence of relatively few Mn3+ ions in 
the samples. 

Susceptibility measurements are consist- 
ent with this result. The variation of magne- 
tization with applied field suggests that 
there is no ferromagnetic component in the 
sample at low temperature, and thus no 
significant Mn3+-Mn4+ coupling. 

II. Neutron Diffraction Study 

The neutron diffraction patterns have 
been obtained with the high-resolution dif- 
fractometer D,,, of the Laue-Langevin In- 
stitute using wavelength A = 2.52 A. Filters 
of pyrolytic graphite were put into the 
incident beam to avoid second- and third- 
harmonic contaminations. Powders were 
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FIG. I. Variation of ,B-Sr,MnOl conductivity with 
temperature (AE = 0.39 eV). 
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FIG. 2. Neutron diffraction patterns of P-Sr,MnO, at 
4.2 and 300 K (x indicates magnetic line positions). 

placed in a vanadium holder whose contri- 
bution at 0 = 36” is indicated in the pat- 
terns. 

I. Crystullographic Structure 
L)etermirwtion 

This study has been made in order to 
determine the atomic positions in the unit 
cell, particularly those of oxygen. The 
Fermi lengths used were 

h,,. = 0.69.10-12 cm, 
h ,,,, = -0.37.10-” cm, and 

h,, = 0.597 10-l” cm. (4) 

The patterns have been obtained at 300 
and 4.2 K, peaks representing magnetic 
contribution are not taken into account for 
the last temperature (Fig. 2). The calcula- 
tions were carried out on the basis of the 
atomic positions in a K,NiF, structure with 
I4/mmm space group. 

A reliability factor R = 0.02 was obtained 
with atomic positions given as in Table I. 

The /3-SrzMnO, structure consists of a 
stacking of two-dimensional layers, perpen- 
dicular to the c axis, these layers being built 
up of [MnO,] octahedra sharing common 
corners with four surrounding octahedra. 
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TABLE I 

REDUCED ATOMIC COORDINATES IN ZHE &Sr,MnO, 
STRUCTURE 

Site x ? z 

Sr 4e 0 0 0.356 (4.2 K) 
0.356 (300 K) 

Mn 20 0 0 0 
0, 4c 0 : 0 
0, 4e 0 0 0.157 (4.2 K) 

0.157 (300 K) 

The rigidity of the lattice is maintened by 
Sr2+ ions which occupy 9-coordinate sites. 

At 300 K the Mn-O1 distance in the equa- 
torial planes is equal to 1.894 A, which is 
slightly smaller than both the sum of the 
ionic radii for Mn4+ and 02- ions ( 1.930 A) 
as proposed by Shannon and Prewitt (5) 
and the Mn-0 distance of 1.903 8, ob- 
served in the p-SrMnO, perovskite-type 
structure (2). Along the c axis, the Mn-O,, 
axial distance is 1.976 A which suggests that 
the MnOs octahedra are only slightly dis- 
torted: (Mn-O,,)/(Mn-O,,) = 1.04. 

The Sr-0 distances are respectively 
4[Sr-0, = 2.610 A], 4[Sr-O,, = 2.677 A], 
and Sr-O,, = 2.485 A, giving an average 
Sr-0 of 2.626 A, which is intermediate 
between the Sr-0 distance in SrO (2.58 A) 
(6) and in P-SrMnO, (2.691 A) (2). 

2. Magnetic Structure Determination 

The patterns obtained below the ordering 
temperature (TN = 170 K) show additional 
reflections whose nature is purely magnetic 
(Fig. 2). 

The magnetic and crystallographic cells 
are related as follows: 

a magn = 2acryst, 
cmam3 = &5t. 

Two propagation vectors are possible: k1 
= 14, t, 01 and kZ = [-i, +, 01. If S1 and Sz 
are the magnetic moments of Mn4+ ions at 
(000) and (4 Q t) in the nuclear cell, it is 
possible to define two linear combinations 

TABLE II 

Symmetrical 
irreducible 

representation of 
the Immm group kl = [t, 1, 01 kz = L-b, 4, 01 

r:, - - 
ri A* FZ 
rz A, + A, F, - F, 
Pi 4 -A, F, + F, 

of S, and S,, F = S, + S, and A = S1 - Sz, 
which characterize respectively the ferro- 
and antiferromagnetic modes. Research of 
the base vectors in the irreducible represen- 
tation of the Immm space group gives the 
modes reported in Table II. 

The comparison between calculated and 
observed intensities shows that the mag- 
netic structure can be described on the base 
of the strictly identical modes ri, A,, or F, 
(Table III). The structure refinement at 4.2 
K (R = 0.027) gives a magnetic moment of 
2.42 2 0.05 pH for the Mn4+ ions. 

From the temperature dependence of the 
magnetic moment, shown in Fig. 3, it is 
possible to estimate the NCel temperature 
at TN = 170 -+ 5 K. 

The magnetic structure of P-Sr2Mn04 is 
given in Fig. 4 and is similar to that of 
K,NiF,. The magnetic moments of Mn4+ 
are parallel to the c axis. In the [Mn04], 
layers, each Mn4+ ion is surrounded by four 
neighbours of opposite spin. An identical 
layer can be obtained by at, 3,4 translation. 
Similar magnetic layer lie in the c direction 
with a period equal to c. As a consequence, 
the structure is different from that of 

FIG. 3. Variation of magnetic moment of @Sr,MnO, 
with temperature. 
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FIG. 4. Magnetic structure of P-Sr,MnO, 

Ca,MnO, where the magnetic period is 2c 
(8). 

III. Calculation of the Exchange Integral 

The measurements of magnetic suscepti- 
bility have been carried out under helium in 
either a Faraday-type balance or a Foner- 
type magnetometer at temperatures be- 
tween 4 and 1000 K. 

Experimental values have been corrected 
from the diamagnetic contributions and the 
second-order Zeeman effect for Mn4+ ions. 
The spin-orbital coupling constant used 
was 138 cm-’ (9), the octahedral ligand- 
field splitting was 22,000 cm-’ (10). 

The thermal dependence of the recipro- 
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FIG. 5. Thermal variation of reciprocal molar sus- 
ceptibility of &Sr2Mn0,. 

cal molar susceptibility is given in Fig. 5. At 
low temperature the paramagnetic impuri- 
ties-eventually isolated Mn3+ ions-give 
rise to the decrease of x-l. The curve shows 
an extended minimum between 200 and 400 
K. At high temperature the curve becomes 
progressively linear: this behavior is char- 
acteristic for lower-dimensional magnetic 
couplings which is probably 2D, due to the 
structural features. 

The Curie constant calculated from sus- 
ceptibility measurements at high tempera- 
ture is 2.1. This value is larger than the 
spin-only value, C,.;,,, = 1.875, expected for 
a spin 2. The paramagnetic Curie tempera- 
ture is estimated to be -800 5 10 K. 

The exchange integral has been esti- 
mated by the high-temperature series ex- 
pansion method. We have used the 
Rushbrooke and Wood equations for the 
case of a square model with S = j where 
Heisenberg interactions persist (I I). From 
the experimental susceptibility values the 

Jjk integral obtained is approximately - 80 
K. 

IV. Discussion of the Results 

The magnetic properties of P-Sr,Mn04 
have been compared with those of its iso- 

TABLE III 

OBSERVED AND CALCULAIED 

hk4GNEI‘IC INIENSITIES WITH THE 

AI MODF 

h k I I /),>\ 1°C ,/I,’ 

110 10.7 Il.06 
I I I 18.1 17.93 
I I? IO.8 10.83 
I I3 5.8 5.88 
114 - 3.01 
130 10.8 9.70 
I31 25.8 18. IO 
115 - 1.6 
I32 14. I 14.7 

’ TheformfactorforMn*+ionsis that 
used by Watson and Freeman (7). 
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TABLE IV 

COMPARISON WITH SOMEMAGNETICDATA FOR 
CALCIUMANDSTRONTIUM OXIDES 

Mn-Mn T, J/A F 
(A) (K) (K) (P'i,) Reference 

CaMnO, 3.73 130 -24 2.64(4.2 K) (12-14) 
/3SrMllQ 3.805 260 -48 2.M77 K) (I.0 
Ca,MnO, 3.667 115 -52 2(4.2 K) (8. 12. Ih) 
~3.Sr,MnO, 3.787 170 -80 2.4X4.2 K) This study 

type Ca,MnO, in Table IV. Additionally, 
results for CaMnOB and the perovskite-like 
/3-SrMn03 are given to show the influence 
of dimensionality on the properties of p- 
Sr,MnO,. The values of the ordering tem- 
peratures are those determined by neutron 
diffraction and the exchange integrals are 
calculated on the basis of Rushbrooke and 
Wood equations. 

From a structural point of view, the 
distances between magnetic ions always 
decrease from the perovskite-type to the 
K,NiF, phase. However, this difference is 
less important for the strontium than for the 
calcium compounds. 

The value of J/k fov P-Sr,MnO, charac- 
terizes strong magnetic interactions be- 
tween neighbor Mn4+ ions, the antiferro- 
magnetic coupling being due to half-filled 
t,, orbitals. This value is appreciably lower 
than that observed for the homologous 
perovskite-like /3-SrMnO, (-48 K). Such 
an evolution is always observed in oxides 
of KZNiF, structure (17). 

In the magnetic structure of /3-SrzMnO,, 
there is no field created around a magnetic 
ion by the eight nearest-neighbor Mn4+ ions 
in the (001) adjacent planes (Fig. 4). This 
suggests that magnetic interactions be- 
tween close layers of Mn4+ ions are small. 
In agreement with the resulting bidimen- 
sional character of the couplings, the order- 
ing temperature (T, = 170 K) is slightly 
larger than the Stanley-Kaplan tempera- 
ture calculated for /?-Sr,MnO, (Ts,, = 156 
K) (18, 19). 

At 4.2 K the value of the magnetic mo- 

ment for the Mn4+ ion, 2.42 pr3, is much 
smaller than that expected for a 3d3 ion: as 
the system is bidimensional this difference 
is probably due to the zero-point spin devi- 
ation effect and the strong covalent charac- 
ter of the Mn4+-0 bond in the magnetic 
layers. 

Table IV shows that the substitution of 
calcium by strontium leads to an increase 
of ordering temperature (from 115 K (8) to 
170 K) and of the strength of magnetic 
couplings (J/k goes from - 52 K ( 16) to 
-80 K) despite greater Mn-Mn distances 
within the layers. A similar evolution has 
been observed for the Ca,-,Sr,MnO, 
perovskite-type solid solution where 
dT,jdu > 0, c( being the unit cell parameter 
(20, 21). As Goodenough has pointed out in 
this case, the n(Mn-0) and cT(Ca, Sr-0) 
bonds are in competition: the progressive 
substitution of calcium by more basic stron- 
tium induces increasing covalency of the 
Mn-0 bonds. This effect prevails on the 
influence of rising Mn-Mn distances due to 
bigger size of the alkaline earth. A quite 
similar analysis can be applied to the 
Ca,MnO, and P-Sr,MnO, phases. 

This study of the magnetic properties of 
P-SrzMn04 does indeed emphasize both the 
2D character of the magnetic interactions 
between neighboring Mn4+ ions and the 
strong covalency of the Mn-0 bonding 
within the magnetic layers. 
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